Loss of Tuberous Sclerosis Complex 2 (TSC2) as a Predictive Biomarker of Response to mTOR Inhibitor Treatment in Patients with Hepatocellular Carcinoma1
نویسندگان
چکیده
BACKGROUND Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death globally. Mechanistic target of rapamycin (mTOR) is frequently up-regulated in HCC and plays an important role in HCC tumorigenesis. Tumors with loss of tuberous sclerosis complex 2 (TSC2), a negative regulator of mTOR signaling, tend to respond well to mTOR inhibitors. We analyzed TSC2 expression status in Korean patients with HCC and evaluated the correlation between TSC2 loss and response to the mTOR inhibitor, everolimus. METHODS We retrospectively assessed 36 patients with advanced HCC who had received sorafenib at a single center in Korea between 2008 and 2014, and for whom tumor specimens were available for TSC2 immunohistochemical analysis (IHC). Three patient-derived tumor cell lines (PDCs) were analyzed by western blotting to determine TSC2 expression and drug sensitivity to mTOR. RESULTS Twelve of 36 patients (33.3%) showed low to undetectable levels of TSC2 expression. No significant differences were observed in progression-free survival (PFS) or overall survival with sorafenib treatment based on TSC2 expression status. Two patients were treated with everolimus after sorafenib failure; one patient, with moderate TSC2 expression, experienced stable disease with a PFS of 5.8 months; the other, with high TSC2 expression, experienced rapid progression. PDC models demonstrated that the TSC2-low HCC PDC line was significantly more sensitive to everolimus than the TSC2-high HCC PDC lines. CONCLUSION Loss of TSC2 may predict improved response to everolimus in HCC patients, but further studies are needed to confirm the predictive role of TSC2 expression for everolimus treatment.
منابع مشابه
Companion Diagnostics and Cancer Biomarkers Loss of Tuberous Sclerosis Complex 2 (TSC2) Is Frequent in Hepatocellular Carcinoma and Predicts Response to mTORC1 Inhibitor Everolimus
Hepatocellular carcinoma (HCC) is the third leading cause of cancer deaths worldwide and hyperactivation of mTOR signaling plays a pivotal role in HCC tumorigenesis. Tuberous sclerosis complex (TSC), a heterodimer of TSC1 and TSC2, functions as a negative regulator of mTOR signaling. In the current study, we discovered that TSC2 loss-of-function is common in HCC. TSC2 loss was found in 4 of 8 H...
متن کاملLoss of Tuberous Sclerosis Complex 2 (TSC2) Is Frequent in Hepatocellular Carcinoma and Predicts Response to mTORC1 Inhibitor Everolimus.
Hepatocellular carcinoma (HCC) is the third leading cause of cancer deaths worldwide and hyperactivation of mTOR signaling plays a pivotal role in HCC tumorigenesis. Tuberous sclerosis complex (TSC), a heterodimer of TSC1 and TSC2, functions as a negative regulator of mTOR signaling. In the current study, we discovered that TSC2 loss-of-function is common in HCC. TSC2 loss was found in 4 of 8 H...
متن کاملCombined Targeting of mTOR and Akt Using Rapamycin and MK-2206 in The Treatment of Tuberous Sclerosis Complex
Tuberous sclerosis complex (TSC), caused by loss-of-function mutations in the TSC1 or TSC2 genes, is an autosomal dominant disease characterized by benign tumor formation in multiple organs. Hyperactivation of mammalian target of rapamycin (mTOR) is the primary alteration underlying TSC tumor. Thus, rapamycin, as an mTOR specific inhibitor, has been assumed as a potential drug for the treatment...
متن کاملTherapeutic targeting of mTOR in tuberous sclerosis.
Failure in the regulation of mTOR (mammalian target of rapamycin) appears to be critical to the pathogenesis of the inherited disorder tuberous sclerosis and the related lung disease LAM (lymphangioleiomyomatosis). Both diseases are caused by mutations of TSC1 or TSC2 (TSC is tuberous sclerosis complex) that impair GAP (GTPase-activating protein) activity of the TSC1-TSC2 complex for Rheb, lead...
متن کاملLoss of Tsc1 or Tsc2 induces vascular endothelial growth factor production through mammalian target of rapamycin.
Mutation in either TSC1 or TSC2 causes the autosomal dominant disorder tuberous sclerosis, in which widespread hamartomas are seen, some of which have a high level of vascularization. Tuberous sclerosis complex (TSC) gene products negatively regulate mammalian target of rapamycin (mTOR) activity. We found that vascular endothelial growth factor (VEGF) is secreted by Tsc1- or Tsc2-null fibroblas...
متن کامل